

Curriculum Vitae

Date Prepared: January 1, 2026

Name: José R. Zubizarreta

Office Address: Department of Health Care Policy
Harvard Medical School
Harvard University
180 Longwood Ave, Office 202-B
Boston, MA 02115

Work Phone: (617) 432-1266

Work Email: zubizarreta@hcp.med.harvard.edu

Work Fax: (617) 432-3503

Education:

2005	BS	Mathematical Engineering	Universidad Católica de Chile
2008	MA	Economics	Universidad de Chile
2011	MA	Statistics	The Wharton School, University of Pennsylvania
2013	PhD	Statistics	The Wharton School, University of Pennsylvania

Faculty Academic Appointments:

07/13-12/13	Instructor (convertible to Assistant Professor)	Division of Decision, Risk, and Operations	Columbia Business School, Columbia University
10/13-06/17	Assistant Professor (by courtesy)	Department of Statistics	Faculty of Arts and Sciences, Columbia University
01/14-06/17	Faculty Affiliate	Data Science Institute	Columbia University
01/14-06/17	Assistant Professor	Division of Decision, Risk, and Operations	Columbia Business School
01/16-06/17	Visiting Assistant Professor	Department of Pediatrics	School of Medicine, Universidad Católica de Chile
07/17-06/18	Assistant Professor	Department of Health Care Policy	Harvard Medical School, Harvard University
07/18-10/22	Associate Professor Associate	Department of Health Care Policy	Harvard Medical School, Harvard University

06/20-10/22	Professor	Department of Biostatistics	Harvard T.H. Chan School of Public Health, Harvard University
07/17-	Faculty Affiliate	Department of Statistics	Faculty or Arts and Sciences, Harvard University
03/20-	Faculty Affiliate	Harvard Data Science Initiative	Harvard University
06/21-	Faculty Affiliate	CAUSALab	Harvard T.H. School of Public Health, Harvard University
10/22-	Professor	Department of Health Care Policy	Harvard Medical School, Harvard University
10/22-	Professor	Department of Biostatistics	Harvard T.H. Chan School of Public Health, Harvard University
01/26-	Daniel C. Tosteson Professor	Department of Health Care Policy	Harvard Medical School, Harvard University

Other Professional Positions:

2005-2006	Coordinator of Voluntary Teachers	INFOCAP (NGO that provides labor training to very low incomes workers; Chile)	<i>52 weeks per year</i>
2005-2006	Research Assistant	Universidad Católica de Chile	<i>12 hrs per week (52 weeks)</i>
2005-2006	Associate Researcher	Observatorio Social, Universidad Alberto Hurtado (Chile)	<i>12 hrs per week (52 weeks)</i>
2007-2008	Coordinator Area of Economic Studies	Observatorio Social, Universidad Alberto Hurtado (Chile)	<i>52 weeks per year</i>
2009	Research Assistant	Center for Promotion of Research Involving Innovative Statistical Methodology, NYU	<i>12 weeks per year</i>
2010-2013	Research Assistant	Department of Statistics, The Wharton School, University of Pennsylvania	<i>20 hrs per week (52 weeks)</i>

Major Administrative Leadership Positions:

Regional:

2016	Conference Organizer	Columbia University Causal Inference Conference on Point Exposures
2016	Conference Organizer	Columbia University Causal Inference Conference on Effect Heterogeneity
2017	Conference Organizer	Columbia University Causal Inference Conference on Longitudinal Studies

National:

2013 Assistant Program Director MIT Media Lab Encuentros Conference

Committee Service:**Local:**

2014-2017	PhD Admissions Committee	Columbia Business School
2015-2017	Faculty Computing Committee	Columbia Business School
2015-2017	Empowering Research Committee	Columbia Business School
2019-	PhD Admissions Committee	Department of Statistics, Faculty of Arts and Sciences, Harvard University
2020-	Postdoctoral Fellows Review Panel	Harvard Data Science Initiative
2020-	Standing Committee on Health Policy	Faculty of Arts and Sciences, Harvard University
2023-	PhD Admissions Committee	Health Policy Program, Harvard University
2024	Co-Chair, Postdoctoral Fellows Selection Committee	Harvard Data Science Initiative
2024-	Center for Computational Biomedicine (CCB) Faculty Advisory Committee	Harvard Medical School
2024	Chair, Statistics Faculty Search Committee	Department of Health Care Policy, Harvard Medical School

National:

2015, 2018, 2019, 2024, 2025	Thomas R. Ten Have Award Committee Reviewer	Atlantic Causal Inference Conference
2022	Reviewer	Agency for Healthcare Research and Quality (AHRQ) National Research Service Award (NRSA) Trainees Research Conference
2022-	Executive	Health Policy Statistics Section, American Statistical

	Committee Secretary	Association
International:		
2016	Session Chair	INFORMS Annual Meeting
2017, 2020	Student Awards Committee	International Conference in Health Policy Statistics
2017	Byar Award Committee	Biometrics Section of the American Statistical Association
2017, 2018	Paper Review Committee	Society for Research on Educational Effectiveness
2020-2022	ICOVID Chile Founding Member	Joint committee formed by Universidad Católica, Universidad de Chile and Universidad de Concepción in coordination with the Government of Chile to measure and communicate the COVID-19 pandemic
2021	Reviewer	National Fund for Scientific and Technological Development, Chile
2021-2023	Scientific Program	International Conference in Health Policy Statistics, American Statistical Association

Professional Societies:

2011-	American Statistical Association	Member
2011-	International Biometric Society, Eastern North American Region	Member
2011-	Institute of Mathematical Statistics	Member
2020-	Society for Causal Inference	Member

Editorial Activities:

Editorial Roles:

2018-	Associate Editor	Observational Studies
2019-2024	Associate Editor	Journal of Computational and Graphical Statistics
2020-2025	Associate Editor	Biometrics
2023-	Associate Editor	Annals of Applied Statistics
2024-	Associate Editor	Journal of the Royal Statistical Society, Series B (Methodology)
2024-	Associate Editor	Journal of the American Statistical Association, Applications and Case Studies
2025-	Associate Editor	Harvard Data Science Review

Adhoc Reviewer:

American Economic Review
American Journal of Epidemiology
American Journal of Political Science
American Journal of Psychiatry

American Statistician
Annals of Applied Statistics
Annals of Epidemiology
Annals of Internal Medicine
Annals of Operations Research
Annals of Statistics
Annals of Surgery
Bayesian Analysis
Biometrics
Biometrika
Biostatistics
BMC Medical Research Methodology
Communications in Statistics – Theory and Methods
Computational Statistics and Data Analysis
Engineering Applications of Artificial Intelligence
Epidemiology
Epidemiologic Methods
Health and Services and Outcomes Research Methodology
Journal of Applied Econometrics
Journal of Causal Inference
Journal of Computational and Graphical Statistics
Journal of Econometrics
Journal of Educational and Behavioral Statistics
Journal of Machine Learning Research
Journal of Research on Educational Effectiveness
Journal of the American Statistical Association, Applications and Case Studies
Journal of the American Statistical Association, Theory and Methods
Journal of the Royal Statistical Society: Series A (Statistics in Society)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
Journal of the Royal Statistical Society: Series C (Applied Statistics)
Lifetime Data Analysis
Management Science
NeurIPS
Observational Studies
Operations Research
PLOS ONE
Psychometrika
Review of Economics and Statistics
Statistica Sinica
Statistical Science
Statistical Methods in Medical Research
Statistics and Computing
Statistics and Public Policy
Statistics in Medicine
Trials

Grant Review Activities:

2018	Reviewer	National Science Foundation (NSF), Methodology, Measurement, and Statistics (MMS) Program
2018	Reviewer	British Medical Research Council

2018, 2019, 2021-	Advisory Panel	Patient Centered Outcomes Research Institute (ghen), Methods Panel
2021	Reviewer	National Fund for Scientific and Technological Development, Chile
2023-	Advisory Panel	National Science Foundation/Methodology, Measurement, and Statistics (NSF/MMS)

Honors and Prizes:

2005	Maximum Distinction	Universidad Catolica de Chile	Mathematical Engineering
2008- 2012	Fulbright- CONICYT Scholarship		
2009- 2013	Graduate Fellow	The Wharton School, University of Pennsylvania	
2011	J. Parker Memorial Bursk Prize	Statistics Department, The Wharton School, University of Pennsylvania	For Excellence in Research
2011	Thomas R. Ten Have Memorial Award	Atlantic Causal Inference Conference	Award for “exceptionally creative or skillful research on causal inference”
2011	Student Paper Award	Health Policy Statistics Section, American Statistical Association	
2012	Deming Scholar Award	American Statistical Society/American Society for Quality	
2012	Young Investigator Award	Statistics in Epidemiology, American Statistical Association	
2012	President Gutmann Leadership Award	University of Pennsylvania	
2013	Student Paper Award	Social Statistics, Government Statistics, and Survey Research Methods Sections, American Statistical Association	
2014	Student Paper Award	International Biometric Society ENAR	
2014	Kenneth Rothman Prize	Epidemiology	For the best paper published in Epidemiology in 2013
2017	Initiative on Data Science Visiting Fellow	Booth School of Business, University of Chicago	
2017	Runner-up Pierskalla Best Paper Award	Health Applications Society, INFORMS	
2019	Runner-up Ralph Gomory Best Industry Studies	Industry Studies Association	
2020	Paper Award William Cochran Prize	Observational Studies	For the best paper published in Observational Studies in 2013-2020

2021	Honorable Mention MSOM Responsible Research Award	2021 INFORMS Annual Meeting	
2022	Fellow	American Statistical Association	Recognizes an established reputation in the field and outstanding contributions to statistics; Fellow designation is limited to 1/3 of 1% of membership each year
2025	Mid-Career Excellence Award	Health Policy Statistics Section, American Statistical Association	
2025	Circle of Honor	Department of Industrial Engineering, University of Chile	Recognizes distinguished graduates for professional excellence and public leadership

Report of Funded and Unfunded Projects

Funding Information:

Past:

2008-2009	Educational Outcomes of the Children of the Poor: The Chilean Case United Nations Development Plan Principal Investigator In 2006, one out of every five children lived below the poverty line in Chile. That same year, half of the children in the country had suffered poverty at least once during their childhood. This project asks the question, what is the impact of experiencing poverty during childhood on educational outcomes during early adulthood? Addressing this question can enlighten the mechanisms under which poverty is transmitted across generations and help to understand the forces that generate and perpetuate the inequality of the Chilean Society.
2015-2017	New Methods for Causal Inference in Randomized and Observational Studies Alfred P. Sloan Foundation Principal Investigator Randomized experiments constitute the most reliable device for learning about the effects of treatments, policies or interventions on human subjects. Nonrandomized or observational studies are ubiquitous in the health and social sciences in part because harmful treatments cannot be imposed to individuals for experimentation. The goal of this research program is to develop new statistical methods that improve the design and analysis of both randomized experiments and observational studies of causal effects. The specific objectives of this project are: (i) to develop new statistical methods that improve (i.a.) the degree of control and (i.b.) the efficiency of randomized experiments, while providing a justified basis for statistical inference and (ii) to develop new, alternative statistical methods to those based on model-based estimates of the propensity score to (ii.a) better adjust for observed covariates and (ii.b) yield more stable estimates causal estimates, especially in longitudinal studies of treatment effects.
2016-2020	Health and Disability over the Life Course NIH, NIA / R01AG056238 Project Co-Investigator (Maestas)

This project investigates the health and work capacity of individuals with moderate and severe health problems, examining how work capacity varies with characteristics of the disability and in relation to economic conditions over time, using administrative and survey data.

2016-2020	Disability Among Older Low-Skilled Workers NIH, NIA / R01AG056239 Co-Investigator (Maestas) This project investigates the health and work abilities of low-skilled, older individuals with moderate health problems, by education and work history, and in relation to economic conditions over time, using administrative and survey data.
2017-2020	Machine Learning for Health Outcomes and Quality of Care in Low-Income Populations NIH / 1DP2MD012722 Co-Investigator (Rose) This project will develop a novel machine learning framework for the generalizability of experimental and quasi-experimental studies, providing population health scientists with robust methodology to assess the effects of health interventions and exposures. Health outcomes and quality of care in low-income populations lag behind other groups, and the impact of health insurance on these disparities among low-income individuals is currently unknown. A major goal of this proposal is to examine the role of insurance coverage on health outcomes in low-income populations with rigorous new tools in partially randomized data.
2018-2020	Alzheimer's Disease and Related Dementia Care within the Medicare Program NIH / 5R01AG062282 Co-Investigator (Hsu) This project will first estimate the extent to which claims-based measures of quality for practices (with and without clinical information about cancer stage and other tumor characteristics from registry data) correlate with practice-reported measures of oncology care quality. Next, for measures of quality for which supplemental clinical data are needed, assess the extent to which adaptive quality measurement strategies that focus primarily on identifying the providers who are delivering the highest- and lowest-quality care would be a more feasible and efficient strategy for assessing (and rewarding) quality of care delivered by oncology providers than measuring quality for all oncology practices.
2018-2021	New Statistical Methods for Causal Inference in the Social Sciences and Public Policy Alfred P. Sloan Foundation / G-2018-10118 \$284,377 Principal Investigator This project proposes new statistical methods for causal inference in the social sciences and public policy. The specific objectives of this project are: (i) to develop new statistical methods that flexibly adjust for covariates and yield more stable causal estimates in observational studies with (i.a) instrumental variables and (i.b) multivalued treatments; (i.c) to study the formal properties of these and related methods; (ii) to develop a new framework for the design and analysis of observational studies with discontinuities that facilitates identification, estimation, and generalization beyond the cutoff of the running variable; and (iii) to develop new methods that improve the degree of control (covariate balance) and statistical efficiency of randomized experiments and

enhance their generalizability.

2017-2020	Improving Feasibility and Efficiency of Quality Measurement in Oncology Practices
2020-2023	Laura and John Arnold Foundation / 20-04402 Co-Investigator (Chernew) This project will first estimate the extent to which claims-based measures of quality for practices (with and without clinical information about cancer stage and other tumor characteristics from registry data) correlate with practice-reported measures of oncology care quality. Next, for measures of quality for which supplemental clinical data are needed, assess the extent to which adaptive quality measurement strategies that focus primarily on identifying the providers who are delivering the highest- and lowest-quality care would be a more feasible and efficient strategy for assessing (and rewarding) quality of care delivered by oncology providers than measuring quality for all oncology practices.
2020-2023	Leveraging EHR Data to Evaluate Key Treatment Decisions to Prevent Suicide-Related Behaviors NIH/NIMH1 / R01 MH121478-01 Co-Investigator (Kessler) This project aims to develop precision treatment rules for primary care physicians trying to develop a treatment plan for patients seeking treatment for common mental disorders and suicide prevention coordinators trying to develop a treatment plan for a patient who just made a nonfatal suicide attempt with the goal of developing a plan that will minimize prevalence of suicide-related behaviors (either suicide deaths or nonfatal attempts) over the next 12 months. The study will carry out two prospective observational studies using Electronic Health Records to evaluate effects of key treatment decisions on suicide-related behaviors over the next 12 months.
2020-2023	Causal Inference with Complex Treatment Regimes: Design, Identification, Estimation, and Heterogeneity Alfred P. Sloan Foundation / G-2020-13946 Co-Investigator (Dominici) As real-world evidence becomes more prominent across the spectrum of social sciences, and particularly in economics, new challenges emerge for randomized and observational studies. Such challenges pertain both to the design phase of a causal analysis as well as to the estimands of interest. In this project, we will address three main issues of critical importance in social sciences: (i) potential failure of randomized control trials (RCT) to balance the pre-treatment variables, especially in high-dimensional settings; (ii) estimation of spillover effects (effects that arise when the outcome of one unit is affected by the treatment received by the other units) in settings where individuals interact with one another; (iii) interpretable discovery and inference on the heterogeneity of causal effects in scenarios with complex treatment regimes. Managing these issues is critical to advancing the field of causal inference.
2020-2023	Towards a New Generation of Matching Methods for Comparative Effectiveness Research Patients Centered Outcomes Initiative (PCORI) / ME-2019C1-16172 \$749,055 Principal Investigator The overarching goal of this project is to develop a new generation of matching methods that can be used to directly and flexibly balance baseline covariates in

comparative effectiveness research (CER) with big, complex, and rich observational data sets. The proposed methods will improve substantially over existing propensity score matching (PSM) and related matching approaches in three ways, all of them building on previous research by the PI that developed direct matching methods to replace the indirect methods used in PSM: Aim 1 will focus on matching for big data by leveraging recent advancements in computation and optimization to (Aim 1.1) scale direct balancing matching methods to large data sources, (Aim 1.2) target causal parameters for specific populations of interest, and (Aim 1.3) devise a data-driven algorithm that will allow the investigator to make explicit bias-variance tradeoffs in approximate covariate balancing. Aim 2 will focus on matching for heterogeneous treatment effects (HTE) and personalized medicine (PM) by developing a new matching strategy to (Aim 2.1) balance covariates for specific treatment-covariate subgroups and test for HTE, (Aim 2.2) find the largest matched sample that represents a particular patient of interest to evaluate personalized treatments, and (Aim 2.3) establish the large sample properties of matching methods that directly balance covariates and devise the first formalized doubly robust matching estimator. Aim 3 will focus on matching for high-dimensional treatments by extending the above methods to (Aim 3.1) estimate the effects of multi-valued (non-binary) treatments, allowing individual health care providers to be considered “treatments,” and thereby to (Aim 3.2) make possible to assess the quality of health care providers for given case-mixes of patients. In each of these aims, we will evaluate the performance of the proposed methods both in simulated and in empirical exemplar data sets from the Veterans Health Administration (VHA). The exemplar data sets will allow us to illustrate the value of the new methods by addressing questions in mental health research that are of independent interest to physicians, policymakers, and stakeholders. Dissemination is a critical objective, with our final aim (Aim 4) to develop open- and easy-to-use software, case study vignettes, and tutorials to make this new generation of matching methods widely available to practitioners in CER and PCOR.

2019-2023	The Impact of Telestroke on Patterns of Care and Long-Term Outcomes NIH/NINDS / R01NS111952 Co-Investigator (Mehrotra) Many patients with a stroke, in particular those in rural communities, receive care at an emergency department that does not have a stroke expert and therefore they may not receive life-saving reperfusion. Telestroke is one potential solution; with telestroke a stroke expert who is physically far away guides a local physician through the decision-making process via videoconference. In this project, our goal is to understand the impact of telestroke on where patients get care, likelihood of dying, disability, and the experience of front-line physicians and nurses.
-----------	---

Current:

2023-2026	Fast and Robust Weighting Methods for Targeted Comparative Effectiveness Patients Centered Outcomes Initiative (PCORI) / ME-2022C1-25648 Principal Investigator Weighting is a general and widely used method for comparative effectiveness research (CER) and broader types of causal inference. The main goal of this project is to develop a new class of fast and robust weighting methods for targeted CER with large observational data sets. The proposed methods will improve substantially over traditional inverse propensity score weighting and related approaches in three meaningful ways, all of them	\$750,000
-----------	---	-----------

building upon previous work by the PI on weighting methods based on mathematical optimization. Aim 1 will develop new weighting methods that can handle large data sets quickly, produce robust and interpretable estimators in difference-in-differences (DiD) settings, and facilitate targeted comparative effectiveness research (CER). In particular, Aim 1.1 will develop new weighting methods to facilitate the study of heterogeneity of treatment effects (HTE), generalization, and personalized medicine. Aim 1.2 will develop new weighting methods for DiD and related designs, which are ubiquitous in CER studies. Aim 1.3 will implement cutting-edge algorithms for weighting in massive electronic medical record (EMR) data sets that are increasingly used in CER studies. Aim 2 will apply and evaluate the performance of the proposed methods in both simulated and real EMR data sets from the Veterans Health Administration (VHA). The data sets will allow us to illustrate the value of the new methods by addressing questions in mental health research that are of independent interest to physicians, policymakers, and stakeholders. Finally, dissemination is a critical objective to make these new weighting methods widely available to practitioners in CER and PCOR. In light of this, Aim 3 will disseminate the new weighting methods to a wide audience of CER and PCOR investigators with open-source software and easy-to-use tutorials.

2023-2027	Private Equity Acquisitions in Primary Care: Effects on the Medicare Program AHRQ / R01 HS029467 Co-Investigator (Song)	\$400,146
	Private equity firms have increasingly acquired primary care practices across the United States. This project examines the changes in clinical and economic outcomes attributable to private equity acquisitions of primary care practices in the Medicare population, focusing on levers by which private equity ownership may alter provider behavior. By linking acquisition data to claims data, this work aims to provide novel, quantitative evidence of changes in key utilization and quality outcomes associated with private equity ownership of primary care. Such evidence may be useful to federal and state policymakers who are currently in the process of designing policy responses to the growing influence of private equity acquisitions in health care delivery.	
2024-2028	SAFEGUARD: Suicide Avoidance Focused Enhanced Group Using Algorithm Risk Detection among Service Members at Risk for Suicide AHRQ / R01HS029497 Co-Investigator (Capaldi, Kessler)	\$8,118,098
	SAFEGUARD builds on STARRS-LS by using the insights developed so far in STARRS-LS to target three landmarks in the Army and subsequently DoD careers as times ideally suited for suicide prevention interventions. SAFEGUARD will implement best-practices interventions at each of these times and evaluates intervention effects. The three landmarks are: 1) The end of Basic Combat Training (BCT), 2) Annual Periodic Health Assessments (PHAs), and 3) Psychiatric hospital discharge.	
2024-2029	Evaluations of Increasing State Investments in Primary Care: Effects on Health Care Spending, Utilization, and Quality AHRQ / R01HS029497 Co-Investigator (Song)	\$1,766,985
	Four states—Colorado, Delaware, Oregon, and Rhode Island—have enacted legislation or regulations to explicitly raise the percent of health care spending spent on primary care, but the effects of these models on primary care access and continuity, total health care spending, utilization (in and outside of primary care), and quality of care remain largely unknown. This gap in knowledge is increasingly detrimental as many additional	

states are now debating or designing similar legislation to increase primary care spending; this project addresses this key gap through rigorous quasi-experimental evaluations of the Colorado, Delaware, Oregon, and Rhode Island models, using newer statistical methodology in matching and weighting to improve causal inference.

2025-2028	Transparent Integration of Experimental and Non-experimental Studies for Personalized Medicine Patients Centered Outcomes Initiative (PCORI)/ME-2022C1-25648 Principal Investigator In recent years, there have been significant breakthroughs in understanding how different treatments compare and how to determine their specific effects on health outcomes. However, many of these advances are based on separate, individual studies. To truly grasp the best patient-centered treatments, we need to combine findings from multiple types of studies and data. This project is focused on creating a transparent and robust methodology that brings these pieces together, offering stronger evidence on treatment effectiveness. The main goal of this project is to create new methods that transparently and robustly integrate findings from both experimental and non-experimental studies, particularly for personalized medicine. The project has three primary objectives: (1) develop new methods for integration and synthesis, (2) test and apply the new methods, and (3) share the methods widely. These new methods will be tested on both simulated and real-world data from different types of studies to ensure they are effective and reliable. This work builds upon previous successful techniques created by the project leader, which have already improved traditional propensity score approaches significantly. The next important step is to extend and apply these methods to integrate and synthesize findings from both experimental and non-experimental studies, ultimately leading to more personalized and reliable treatment guidelines.	\$750,000
-----------	--	-----------

2025-2030	Medicare at a Crossroads NIH/NIA / 2P01AG032952-16 Co-Investigator (Landon/McWilliams) Guided by frameworks from economics and disparities research, we will provide careful examinations of the tradeoffs involved in potential solutions to the most significant challenges facing Medicare. Our forward-looking research agenda encompasses 4 areas examined by 5 projects: 1) the importance of insurer competition – both within MA and between MA and TM – to beneficiary welfare and Medicare program objectives; 2) the results of current regulatory efforts to elicit value from MA and the potential for improved approaches; 3) the implications of varying approaches to filling historical gaps in prescription drug and long-term care coverage, including tradeoffs between universal vs. targeted benefits and financial vs. administrative barriers; and 4) the prospects for market demand for high-quality physicians and organizations to drive improvements that Medicare's quality-improvement strategies have failed to achieve.	\$13,108,077
-----------	---	--------------

Projects Submitted for Funding:

2025-2029	Under and overuse of specialist care among primary care physicians and consequences for older adults AHRQ Co-Investigator (Stevens)
2025-2030	The Impact of Changes in Primary Care Physicians Work Effort on the Health of Older Adults

NIH/NIA
Co-Investigator (Rotenstein)

2026-2031 The Determinants and Impact of How Primary Care Physicians Practice Care for Older Adults
NIH
Co-Investigator (Landon/Rotenstein)

2026-2031 Health Predictors and Health Impact of Penetrating Injuries Among Older Adults
NIH
Co-Investigator (Song)

2026-2031 Patient Outcomes and Health Care Use in U.S. Hospitals After Private Equity Acquisition
NIH
Co-Investigator (Song)

Report of Local Teaching and Training

Teaching of Students in Courses:

2007-2008 ICS 2562 Applied Econometrics
Undergraduate students
Universidad Catolica de Chile, Department of Industrial and Systems Engineering
1.5-hr sessions 2x per week for 12 weeks
Instructor

2014 B9323 Introduction to Econometrics and Statistical Inference
Graduate students
Columbia Business School, Division of Decision, Risk, and Operations
1.5-hr sessions 2x per week for 12 weeks
Instructor

2014-2016 B9124 Causal Inference
PhD students
Columbia Business School, Division of Decision, Risk, and Operations
1.5-hr sessions 2x per week for 12 weeks
Instructor

2015-2016 B6100 Managerial Statistics
MBA students
Columbia Business School, Division of Decision, Risk, and Operations
1.5-hr sessions 3x per week for 6 weeks (2 sections)
Instructor

2017-2019 Health Policy Methods Seminar
PhD students
Harvard Medical School, Department of Health Care Policy
1-hr sessions 1x per month
Instructor

2017- Health Policy Statistics Reading Course
PhD students
Harvard Medical School, Department of Health Care Policy
1.5-hr session 1x per year
Guest Lecturer

2018-2019 Design of Experimental and Non-
Harvard Medical School, Department of

	experimental Studies (DENS) Reading Group PhD students	Health Care Policy; Faculty of Arts and Sciences, Department of Statistics 1-hr session 1x per week for 9 months Group Leader
2018	HBS 4482 Empirical Technology and Operations Management PhD students	Harvard Business School 1.5-hr session 2x for 9 months Guest Lecturer
2018-	Causal Inference Reading Group PhD students	Harvard Medical School, Faculty of Arts and Sciences, and Graduate School of Education 1-hr session 2x per month for 9 months Group Co-Leader
2019	PWY120 Essentials of the Profession MD students	Harvard Medical School 1-hr tutorial 2x per week for 2.5 weeks Group Co-Leader
2019	STAT 397 Design of Experimental and Non-experimental Studies PhD students	Faculty of Arts and Sciences, Department of Statistics 1.5-hr session 4x per month fall semester Instructor (<i>5/5 on course evaluations</i>)
2020	HKS API 115 / Economics 2115 / HBS 4175 Econometric Methods for Applied Research II PhD students	Harvard Kennedy School 1.5-hr session 2x for 9 months Guest Lecturer
2020-	2000B/SUP 958/HPM 246 Health Policy Research Designs and Methods PhD students	Faculty of Arts and Sciences, Health Policy PhD program 3-hr session 1x for 9 months Guest Lecturer
2020-2023, 2026	STAT 293/STAT 393 Design of Experimental and Non-experimental Studies Advanced undergraduate and PhD students	Faculty of Arts and Sciences, Department of Statistics 3-hr session 4x per month spring semester Instructor

Research Supervision:

2017-	Supervision of four PhD candidates from FAS and HSPH	Individual meetings 1 hour per week each
2017-	Supervision of two MA candidates from FAS and HSPH	Individual meetings 1 hour per week each
2020-	Supervision of one postdoctoral fellow from HMS	Individual meetings 1 hour per week

Formally Mentored Harvard Medical, Dental and Graduate Students:

2017-2018 Christopher Hase, MA in Statistics, Harvard University
Joint work

2017-2019 Reagan Moser, PhD in Statistics, Harvard University
Joint work

2017-2019 Juan Díaz, PhD Candidate in Statistics, Harvard University
Joint work and Advisor

2017-2022 Ambarish Chattopadhyay, PhD Candidate in Statistics, Harvard University
Joint work and Advisor

2017 Elisa Zhang, undergraduate student, University of California, Los Angeles
Summer intern

2018-2019 Zacharias Branson, PhD in Statistics, Harvard University
Dissertation Committee Member

2018-2019 Debmalya Mandal, PhD in Computer Science, Harvard University
Dissertation Committee Member

2018-2021 Xiao Wu, PhD in Biostatistics, Harvard University
Dissertation Committee Member

2019-2023 Bijan Niknam, PhD in Health Policy (Methods for Policy Research), Harvard University
Joint work and Advisor

2020-2021 Eric Dunipace, PhD in Biostatistics, Harvard University
Joint work and Co-Advisor

2020-2022 Kwangho Kim, Seidman Postdoctoral Fellow, Harvard University
Joint work and Mentor

2020-2022 Shasha Han, Postdoctoral Fellow, Harvard University/Peking University
Joint work and Mentor

2020-2024 Eric Cohn, PhD in Biostatistics, Harvard University
Joint work and Advisor

2020-2024 Yige Li, PhD in Biostatistics, Harvard University
Joint work and Advisor

2020-2024	Fangli Geng, PhD in Health Policy, Harvard University Joint work and Dissertation Committee Member
2021-2023	Larry Han, PhD in Biostatistics, Harvard University Joint work
2021-2023	Noemi Sportiche, PhD in Health Policy (Methods for Policy Research), Harvard University Dissertation Committee Member
2022-2025	Ta-Wei Huang, PhD Candidate in Marketing, Harvard University Dissertation Committee Member
2022-	Zhu Shen, PhD Candidate in Biostatistics, Harvard University Joint work and Advisor
2022-2025	Sofia Vega, PhD Candidate in Biostatistics, Harvard University Dissertation Committee Member
2023	Jonathan Che, PhD in Statistics, Harvard University Dissertation Committee Member
2023-	Sophie Woodward, PhD Candidate in Biostatistics, Harvard University Joint work and Dissertation Committee Member
2023-	Wenqi Shi, PhD Candidate in Statistics, Harvard University Joint work and Advisor
2023-	Yuzhou Lin, PhD Candidate in Statistics, Harvard University Joint work and Dissertation Committee Member
2023-	Nathan Cheng, PhD Candidate in Statistics, Harvard University Joint work and Co-Advisor
2024-	Yige Li, Postdoctoral Fellow, Department of Health Care Policy and CAUSALab, Harvard University Joint work and Mentor
2024-2025	Jing Yin, Wojcicki-Troper Postdoctoral Fellow, Harvard Data Science Initiative Joint work and Mentor
2024-	Hannah Jin, PhD Candidate in Biostatistics, Harvard University Joint work and Advisor
2024-	Nadia Bell, PhD in Health Policy (Methods for Policy Research), Harvard University Joint work and Advisor
2025-	Daniel Watt, PhD in Health Policy (Methods for Policy Research), Harvard University Advisor

Other Mentored Trainees and Faculty:

2014-2015 Nikhil Bhat, PhD in Decision, Risk, and Operations, Columbia University
Dissertation Committee Member

2014-2016 Cinar Kilcioglu, PhD in Decision, Risk, and Operations, Columbia University
Joint work and Co-Advisor

2014-2016 Zach Shahn, PhD in Statistics, Columbia University
Joint work and Dissertation Committee Member

2014-2017 Wengi Hu, PhD in Decision, Risk, and Operations, Columbia University
Joint work and Co-Advisor

2014-2017 Maria Resa, PhD in Statistics, Columbia University
Co-Advisor

2014-2017 Susanna Makela, PhD in Statistics, Columbia University
Dissertation Committee Member

2015-2018 Giancarlo Visconti, PhD in Political Science, Columbia University
Joint work and Dissertation Committee Member

2015-2018 David Hirshberg, PhD Candidate in Statistics, Columbia University
Joint work and Co-Advisor

2015-2020 Yixin Wang, PhD Candidate in Statistics, Columbia University
Joint work

2015-2020 Magdalena Bennett, PhD Candidate in Education, Columbia University
Joint work and Dissertation Committee Member

Formal Teaching of Peers:

No presentations below were sponsored by outside entities

Local Invited Presentations:

No presentations below were sponsored by outside entities

2013 Designing an Observational Study to be Less Sensitive to Unmeasured Biases: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
Sociology Department, University of Pennsylvania

2013 New Statistical Methods for Causal Inference in Observational Studies with Applications to the Social Sciences in Health Policy
Columbia Business School, Columbia University

2013 Using Mixed Integer Programming for Matching in Observational Studies: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
Teachers College, Columbia University

2014 Using Mixed Integer Programming for Matching in Observational Studies: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress

	Department of Statistics, Columbia University
2016	Measuring the Effect of the Experience of Incarceration on Reoffending Social Enterprise Leadership Forum, Columbia Business School, Columbia University
2017	New Matching Methods for Causal Inference and Impact Evaluation using Mathematical Programming Columbia Business School
2017	Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments Department of Statistics, Harvard University
2017	Methods for Causal Inference to Advance Research in Health Care and Public Policy Department of Statistics, Harvard University
2017	Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments Causal Inference Group, Harvard School of Public Health
2018	Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments Biostatistics HIV Working Group, Harvard School of Public Health
2018	Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments Institute for Quantitative Social Science, Harvard University
2018	Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments Harvard Catalyst Biostatistics Symposium, Harvard University
2018	Methods for Causal Inference to Advance Research in Health Care and Public Policy Department of Statistics, Harvard University
2018	Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments Health Economics Seminar, Harvard University
2019	What is the Impact of an Earthquake on Educational Attainment? A Matching Approach Radcliffe Institute, Harvard University
2019	Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments Kolokotrones Circle, Harvard School of Public Health
2019	Methods for Causal Inference to Advance Research in Health Care and Public Policy Department of Statistics, Harvard University
2019	Measuring Quality of Oncology Practices Healthcare Markets and Regulation Lab Seminar Series, Harvard Medical School

2020	Weighting for Causal Inference Kolokotrones Symposium, Harvard School of Public Health
2020	Methods for Causal Inference to Advance Research in Health Care and Public Policy Department of Biostatistics, Harvard School of Public Health
2021	Effectiveness of Localized Lockdowns in the COVID-19 Pandemic Biostatistics HIV Working Group, Harvard School of Public Health
2021	Targeted Quality Measurement of Health Care Providers Health Care Policy Seminar, Harvard Medical School
2021	Small Weights for Big Data and the Hidden Populations of Linear Regression Sloan Group Working Seminar, Harvard Data Science Initiative
2021	Targeted Quality Measurement of Health Care Providers Cancer Outcomes and Population Sciences Seminar, Dana-Farber Cancer Institute
2021	Methods for Causal Inference to Advance Research in Health Care and Public Policy Department of Statistics, Faculty of Arts and Sciences, Harvard University
2021	Effectiveness of Localized Lockdowns in the COVID-19 Pandemic CAUSALab Inaugural Symposium: Causal Inference from Real World Data in the Era of COVID-19, Harvard T. H. Chan School of Public Health
2022	Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference CAUSALab, Harvard T. H. Chan School of Public Health
2022	Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference Institute for Quantitative Social Science, Harvard University
2022	Methods for Causal Inference to Advance Public Research Department of Statistics, Faculty of Arts and Sciences, Harvard University
2023	Design of Experimental and Non-experimental Studies with the designmatch Package for R Center for Computational Biomedicine, Harvard Medical School
2023	Causation, Comparison, and Regression Deep Statistics, Faculty of Arts and Sciences, Harvard University
2023	Balanced and Robust Randomized Treatment Assignments: The Finite Selection Model for the Health Insurance Experiment and Beyond Healthcare Markets and Regulation Lab Seminar Series, Harvard Medical School
2023	DAENS: Design & Analysis of Experimental & Non-experimental Studies Department of Statistics, Faculty of Arts and Sciences, Harvard University

2024	Commentary of “Being Realistic About Unmeasured Biases in Observational Studies” by Paul R. Rosenbaum Causal Inference Seminar, Harvard Data Science Initiative
2024	lmw: Linear Model Weights for Causal Inference All Hands Meeting, Institute for Quantitative Social Science, Harvard University
2024	Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Robust Estimation Department of Biostatistics, Harvard T.H. Chan School of Public Health
2024	Toward Personalized, Robust, and Transparent Institutional Quality Measurement Department of Statistics, Faculty of Arts and Sciences, Harvard University
2025	An Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Weighting Diagnostics Department of Health Care Policy, Harvard Medical School
2025	DAENS: Design & Analysis of Experimental & Non-experimental Studies Biostatistics Department Harvard T. H. Chan School of Public Health
2025	An Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Robust Estimation; Seminar for the Quantitative Cancer Training Grant Harvard T. H. Chan School of Public Health
2025	An Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Robust Estimation; CSRP/T32 Seminar Series Harvard T. H. Chan School of Public Health
2025	An Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Robust Estimation Department of Health Care Policy, Harvard Medical School
2025	Commentary of “Weight For It: Equivalent Outcome Models of Weighting Estimators in Causal Inference” by Avi Feller Causal Inference Seminar, Harvard Data Science Initiative
2025	Space-Time-Meta Causal Inference: A Weighting Perspective Department of Statistics, Faculty of Arts and Sciences, Harvard University

Report of Regional, National and International Invited Teaching and Presentations

No presentations or short courses below were sponsored by outside entities

Regional short courses:

2019	Introduction to Causal Inference (<i>half day course</i>) Harvard Data Science Initiative Annual Conference, Cambridge, MA
------	---

2022

Tutorial on Causal Inference (*half day course*)
Harvard Data Science Initiative Annual Conference, Cambridge, MA

Regional presentations:

2012 Matching Methods in Observational Studies
Statistics Department, Columbia University

2012 Effect of the 2010 Chilean Earthquake on Posttraumatic Stress: Illustrating New Matching Methods for Clinical, Epidemiological and Health Outcomes Research
Department of Psychiatry, Columbia University

2012 Designing an Observational Study to be Less Sensitive to Unmeasured Biases: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
Department of Biostatistics, Columbia University

2013 Using Mixed Integer Programming for Matching in Observational Studies: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
Department of Statistics, Harvard University

2015 Stable Weights that Balance Covariates for Causal Inference and Estimation with Incomplete Data
Institution for Social and Policy Studies, Yale University

2015 Stable Weights that Balance Covariates for Causal Inference and Estimation with Incomplete Data
Robert H. Smith School of Business, University of Maryland

2017 New Matching Methods for Causal Inference and Impact Evaluation using Mathematical Programming
Operations Research Center, Massachusetts Institute of Technology

2018 Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments
Center for Statistical Sciences and Department of Biostatistics, Brown University

2022 Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference
Department of Biostatistics, Boston University

2022 Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference
Department of Statistics, Columbia University

2023 Balanced and Robust Randomized Treatment Assignments: The Finite Selection Model for the Health Insurance Experiment and Beyond
Healthcare Markets and Regulations Lab Seminar, Harvard Medical School, Boston, MA

2023 Balanced and Robust Randomized Treatment Assignments: The Finite Selection Model for the Health Insurance Experiment and Beyond

Department of Mathematics & Statistics, Boston University

2024 An Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Robust Estimation
Langone Biostatistics Symposium, New York University

2025 An Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Robust Estimation
Econometrics Seminar Department of Economics, Boston University

2025 Space-Time-Meta Causal Inference: A Weighting Perspective
Division of Biostatistics, NYU Langone Health

2025 Space-Time-Meta Causal Inference: A Weighting Perspective
Bouvé College of Health Sciences, Northeastern University

National:

National short courses:

2015 Optimal Designs for Causal Inference Using Integer Programming (*two-day course*)
Center for Mathematical Studies, Northwestern University, Evanston, IL
New Matching Methods for Causal Inference (*half day course*)

2017 Atlantic Causal Inference Conference, University of North Carolina at Chapel Hill, NC

2017 New Matching Methods for Causal Inference (*half day course*)
MEDpiNet PPP Annual Meeting, Food and Drug Administration (FDA), Silver Spring, MD

2018 New Matching Methods for Causal Inference (*half day course*)
Society for Research in Educational Effectiveness (SREE) Spring Conference, Washington, DC

2019 Design of Matched Studies with Improved Internal and External Validity (*half day course*)
International Biometric Society, ENAR Spring Meeting, Philadelphia, PA

2021 New Weighting Methods with Improved Internal and External Validity in Empirical Research Instructor (*half day course*)
Society for Research in Educational Effectiveness (SREE) Annual Conference, Washington, DC

2021 Multivariate Matching Methods for Causal Inference (*round table*)
Joint Statistical Meetings, Seattle, WA

2023 Design and Analysis of Observational Studies of Causal Effects (*half day course*)
Brandeis/Harvard Substance Use Disorder Center, Boston, MA

2023 Combining Information for Causal Inference (with Issa Dahabreh)
CAUSALab, Harvard T.H. Chan School of Public Health, Boston, MA

2024 Combining Information for Causal Inference (with Issa Dahabreh)
 CAUSALab, Harvard T.H. Chan School of Public Health, Boston, MA

2025 Combining Information for Causal Inference (with Issa Dahabreh)
 CAUSALab, Harvard T.H. Chan School of Public Health, Boston, MApcor

National presentations:

2011 Contrasting Evidence Within and Between Institutions that Supply Treatment in an Observational Study of Alternative Forms of Anesthesia/Invited Presentation
 Joint Statistical Meetings, Miami FL

2012 Designing an Observational Study to be Less Sensitive to Unmeasured Biases: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
 Joint Statistical Meetings, San Diego, CA

2013 Using Mixed Integer Programming for Matching in Observational Studies: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
 Department of Statistics, Stanford University

2013 Designing an Observational Study to be Less Sensitive to Unmeasured Biases: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
 Department of Biostatistics, Johns Hopkins University

2013 Designing an Observational Study to be Less Sensitive to Unmeasured Biases: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
 Booth School of Business, University of Chicago

2013 Using Mixed Integer Programming for Matching in Observational Studies: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
 Heinz College, Carnegie Mellon University

2013 Matching for Balance, Pairing for Heterogeneity in an Observational Study of Effectiveness of For-profit and Not-for-profit High Schools in Chile
 Joint Statistical Meetings, Montreal, CA

2014 Design and Analysis of Observational Studies
 Kellogg School of Management, Northwestern University

2014 Optimal Matching with Direct Covariate Balance Using Integer Programming
 Kaiser Permanente, San Francisco

2014 Stable Weight Adjustment for Causal Inference and Estimation with Incomplete Data
 Eastern and North American Region/International Biometric Society Spring Meeting, Baltimore, MD

2014 Stronger Instrumental Variables Via Integer Programming for Healthcare Research
 INFORMS, San Francisco, CA

2014 Stable Weight Adjustment for Causal Inference and Estimation with Incomplete Data
 Joint Statistical Meetings, Boston, MA

2015 Stable Weights that Balance Covariates for Causal Inference and Estimation with Incomplete Data
 Heinz College, Carnegie Mellon University

2015 Stable Weights that Balance Covariates for Causal Inference and Estimation with Incomplete Data
 Biostatistics Department, Johns Hopkins University

2015 Stable Weights that Balance Covariates for Causal Inference and Estimation with Incomplete Data
 Statistics Department, Duke University

2015 Optimal Multilevel Matching in Clustered Observational Studies: A Case Study of the School Voucher System in Chile
 SREE, Washington, DC

2015 Covariate Balanced Restricted Randomization: Optimal Designs, Exact Tests, and Asymptotic Results
 INFORMS, San Francisco, CA

2016 New Matching Methods for Causal Inference and Impact Evaluation using Mathematical Programming
 MEDS Kellogg School of Management, Northwestern University, Evanston, IL

2016 designmatch: Construction of Matched Samples for Randomized Experiments and Observational Studies that are Balanced by Design
 Uber, California

2016 Stable Weights that Balance Covariates for Causal Inference and Estimation with Incomplete Data
 Methods Workshop, University of California at Berkeley

2016 designmatch: Construction of Matched Samples for Randomized Experiments and Observational Studies that are Balanced by Design
 Atlantic Causal Inference Conference, New York, NY

2016 Large-scale Optimal Matching for Design-based Inference Using Integer Programming
 INFORMS, Nashville, TN

2016 Maximizing the Information Content of a Balanced Matched Sample
 Joint Statistical Meetings, Chicago, IL

2017 New Matching Methods for Causal Inference and Impact Evaluation using Mathematical Programming
 Booth School of Business, University of Chicago

2017 New Matching Methods for Causal Inference and Impact Evaluation using Mathematical Programming

Department of Health Care Policy, Harvard Medical School

**Presentation was before appointment at HMS*

2017 New Matching Methods for Causal Inference and Impact Evaluation Using Mathematical Programming/Marketplace Optimization Data Science Symposium
Uber, San Francisco

2018 Minimal Weights for the Design of Observational Studies and Sample Surveys
Department of Biostatistics, Vanderbilt University, Nashville, TN

2018 Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments
Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA

2018 Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments
Heinz College, Carnegie Mellon University, Pittsburgh, PA

2018 Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments Joint Statistical Meetings, Vancouver, Canada

2019 Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments
Division of Biostatistics, College of Public Health, University of Ohio, Columbus, OH

2019 Multivariate Matching Methods for Generalization and Individualization
Department of Statistics, University of California, Berkeley, CA

2020 Matching Techniques for Generalization and Individualization
Joint Statistical Meetings, Philadelphia, PA

2020 Matching Techniques Using Modern Optimization
Department of Biostatistics and Informatics, Colorado School of Public Health, CO

2020 Effectiveness of Localized Lockdowns in the COVID-19 Pandemic
Causal Inference Research Group, University of North Carolina at Chapel Hill, NC

2021 Small Weights for Big Data: Computational Aspects and Empirical Performance
Joint Statistical Meetings, Seattle, WA

2021 Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference
Carnegie Mellon University Tepper School of Business, PA

2022 New Weighting Methods with Enhanced Internal and External Validity
Mental Health Research Network

2022 Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference
Mental Health Research Network

2022 Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference
Center for Statistics and the Social Sciences Seminar, University of Washington, WA

2022 New Weighting Methods for Health Policy Research
AcademyHealth Annual Research Meeting, Washington, DC

2022 Modern Matching Methods for Causal Inference in Health Policy Research
AcademyHealth Annual Research Meeting, Washington, DC

2022 Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference
Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, PA

2022 Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference
Department of Statistics, Iowa State University, IA

2023 Design of Experimental and Non-experimental Studies with the *designmatch* Package for R
Center for Computational Biomedicine, Harvard Medical School, Boston, MA

2023 Using Stable Balancing Weights for Causal Inference and Impact Evaluation
AcademyHealth Annual Research Meeting, Seattle, WA

2023 WHO World Mental Health Consortium (WMH-ICS) Annual Meeting
Harvard Medical School, Boston, MA

2023 Balanced and Robust Randomized Treatment Assignments: The Finite Selection Model for the Health Insurance Experiment and Beyond
Institute for Social Research, University of Michigan, MI

2023 Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference
Department of Biostatistics, University of Michigan, MI

2023 Causality through the Prism of Statistics
Board on Life Sciences, National Academies of Sciences, Engineering, and Medicine, Washington, DC

2024 Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Robust Estimation
Decision Sciences, Fuqua School of Business, Duke University, NC

2024 Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Robust Estimation
Department of Statistics, University of Florida, FL

2024 A Framework to Establish Causation Beyond Association in Observational Studies

Board on Health Care Services, National Academies of Sciences, Engineering, and Medicine, Washington, DC

2024 Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Robust Estimation
 Department of Biostatistics, University of Washington, WA

2025 An Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Weighting Diagnostics
 Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, CA

2025 An Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Weighting Diagnostics
 SEEDS Conference, University of Southern California, CA

International:

International short courses:

2014	New Methods for Causal Inferences in the Health and Social Sciences (<i>half day course</i>) Columbia Global Center/Universidad Catolica de Chile, Santiago, Chile
2015	Design of Observational Studies (<i>two-day course</i>) International Workshop on Applied Statistics, Bogota, Columbia
2017	New Matching Methods for Causal Inference (<i>half day course</i>) United Kingdom Causal Inference Meeting, University of Essex, England
2018	Recent Developments in Causal Inference (<i>half day course</i>) International Conference in Health Policy Statistics, Charleston, SC
2023	Causal Inference (one and half days) Doctoral School in Statistics and Applied Probability (CUSO), Switzerland

International presentations:

2007 A First Household Panel Survey in Chile: Methodological Considerations
Institute of Social and Economic Research, University of Essex, England

2008 How Income Stratification is Perpetuated Across Generations? The Contribution of
Longitudinal Surveys
Expansiva Workshop, Santiago, Chile

2011 Contrasting Evidence Within and Between Institutions that Supply Treatment in an
Observational Study of Alternative Forms of Anesthesia
International Conference on Health Policy Statistics, Cleveland, OH

2012 Using Mixed Integer Programming for Matching in Observational Studies: Effect of the
2010 Chilean Earthquake on Posttraumatic Stress
Department of Statistics, Warwick University, England

2012 Designing an Observational Study to be Less Sensitive to Unmeasured Biases: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
 Department of Biostatistics and Epidemiology, McGill University

2013 Using Mixed Integer Programming for Matching in Observational Studies: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
 Department of Statistics, University of Oxford, England

2013 Using Mixed Integer Programming for Matching in Observational Studies: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
 Department of Statistics, London School of Economics, England

2013 Using Mixed Integer Programming for Matching in Observational Studies: Effect of the 2010 Chilean Earthquake on Posttraumatic Stress
 Statistical Laboratory, University of Cambridge, England

2013 Estimation Strategies in Observational Studies
 Neocosur Conference, Buenos Aires, Argentina

2013 Effect of Prophylactic CPAP in Very Low Birth Weight Infants in South America
 Neocosur Conference, Buenos Aires, Argentina

2015 Stable Weights that Balance Covariates for Causal Inference and Estimation with Incomplete Data
 Statistical Laboratory, University of Cambridge, England

2015 Stable Weights that Balance Covariates for Causal Inference and Estimation with Incomplete Data
 UK Causal Inference Meeting, University of Bristol, England

2015 Stable Weights that Balance Covariates for Causal Inference and Estimation with Incomplete Data
 International Workshop on Applied Statistics, Bogota, Colombia

2016 Toward an Evaluation of the Comparative Effectiveness of the Intensive Care Units of the Neocosur Network
 Neocosur Conference, Buenos Aires, Argentina

2017 Comparative Effectiveness of the Intensive Care Units of the Neocosur Network through Weighted Samples
 Neocosur Conference, Buenos Aires, Argentina

2017 Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments
 International Conference of the ERCIM WG on Computational and Methodological Statistics, Senate House, University of London, England

2017 New Statistical Methods for Causal Inference in Medicine and Public Health
 School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile

2017 New Statistical Methods for Causal Inference in Medicine and Public Health

	Ministry of Health, Gobierno de Chile, Santiago, Chile
2018	Minimal Approximate Balancing Weights: Asymptotic Properties and Practical Considerations International Conference in Health Policy Statistics, Charleston, SC
2018	New Matching Methods to Increase the Internal and External Validity of Observational Studies WHO World Mental Health Surveys Annual Meeting, Boston, MA
2019	Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments School of Medicine, University of Nottingham, England
2019	General Discontinuity Designs Using Covariates Statistical Laboratory, University of Cambridge, England
2019	Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, England
2019	Introduction to Causal Inference Harvard Data Science Annual Conference, Boston, MA
2019	Building Representative Matched Samples in Large-Scale Observational Studies with Multivalued Treatments Optimization-Conscious Econometrics Conference, University of Chicago, Chicago, IL
2019	Complex Discontinuity Designs Using Covariates The Statistical and Applied Mathematical Sciences Institute (SAMSI) Opening Workshop on Causal Inference, Durham, NC
2019	Complex Discontinuity Designs Using Covariates International Conference of the ERCIM WG on Computational and Methodological Statistics, Senate House, University of London, England
2020	Effectiveness of Localized Lockdowns in the COVID-19 Pandemic COVID-19 Modeling Workshop, Santiago, Chile
2021	Matching Techniques for Generalization and Individualization Yau Mathematical Sciences Center, Tsinghua University, China
2021	Profile Matching for the Generalization and Personalization of Causal Inferences Yau Mathematical Sciences Center, Tsinghua University, China
2021	Profile Matching for the Generalization and Personalization of Causal Inferences Applied Statistics Symposium, International Chinese Statistical Association
2021	Discussion of “Evidence Factors from Multiple, Possibly Invalid, Instrumental Variables” Online Causal Inference Seminar

2021 Effectiveness of Localized Lockdowns in the COVID-19 Pandemic
Annual Congress of the Chilean Society of Infectiology, Santiago, Chile

2022 Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference
Department of Economics, University of Chile, Santiago, Chile

2022 Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference
Online Causal Inference Seminar

2023 Causation, Comparison, Optimization: Bridging Matching, Regression, and Weighting as Mathematical Programs for Causal Inference
School of Health and Related Research (ScHARR), University of Sheffield, England

2023 Balanced and Robust Randomized Treatment Assignments: The Finite Selection Model for the Health Insurance Experiment and Beyond
European Causal Inference Meeting, Oslo, Norway

2023 Mathematical Programs for Causal Inference
Online Seminar Series Machine, Learning Network of European Data Scientists (NeEDS Mathematical Optimization)

2023 Principles for Causal Inference
Department of Industrial and Systems Engineering, Universidad Catolica de Chile

2023 Mathematical Programs for Causal Inference
Department of Industrial and Systems Engineering, Universidad Catolica de Chile

2023 Balanced and Robust Randomized Treatment Assignments: The Finite Selection Model for the Health Insurance Experiment and Beyond
International Conference on Econometrics and Statistics, Tokyo, Japan

2023 Discussion of “How to Learn More from Observational Factorial Designs”
Online Causal Inference Seminar

2023 Social Information and Causal Inference for the Design of Public Policies: Earthquake, Profit, and Pandemic in Chile
XV Meeting of the Chilean Society for Public Policy, Universidad de Chile

2024 Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Robust Estimation
Center for Monetary and Financial Studies (CEMFI), Madrid, Spain

2024 An Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Weighting Diagnostics
Statistical Laboratory, University of Cambridge, England

2024 Effect Aliasing in Observational Studies

	International Conference on Computational and Methodological Statistics, CFE-CMStatistics, Kings College, England
2025	Effect Aliasing in Observational Studies International Conference in Health Policy Statistics San Diego, CA
2025	Towards Personalized Meta-Analyses European Causal Inference Conference Ghent University, Brussels, Belgium
2025	Effect Aliasing in Observational Studies International Conference on Econometrics and Statistics Tokyo, Japan
2025	An Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Weighting Diagnostics 65th ISI World Statistics Congress The Hague, Netherlands
2025	Balanced and Robust Randomized Treatment Assignments: The Finite Selection Model for the Health Insurance Experiment and Beyond Read with discussion before the Royal Statistics Society London, England
2025	On the Use of Weighting for Personalized and Transparent Meta Analysis International Conference in Statistics and Data Science Seville, Spain
2026	Space-Time-Meta Causal Inference: A Weighting Perspective School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile

Report of Technological and Other Scientific Innovations

Statistical Software:

- 1) depinf package for R, with Peter Aronow (Yale) and Forrest Crawford (Yale): statistical package for the construction of confidence intervals for linear unbiased estimators under constrained dependence.
- 2) designmatch package for R, with Cinar Kilcioglu (Uber) and Juan Pablo Vielma (MIT): statistical package for the construction of matched samples that are balanced and representative by design.
- 3) FSM package for R, with Ambarish Chattopadhyay (Harvard) and Carl Morris (Harvard): randomized and balanced allocation of units to treatment groups using the Finite Selection Model (FSM).
- 4) lmw package for R, with Ambarish Chattopadhyay (Harvard) and Noah Greiffer (Harvard): statistical package for linear regression estimation by weighting and design-based linear regression diagnostics.
- 5) mipmatch package for R: statistical package for the construction of matched samples using mixed integer programming.

- 6) sbw package for R, with Yige Li (HCP) and Mohammed-Amine Allouah (Columbia): statistical package for the construction of stable weights that balance covariates for causal inference and estimation with incomplete outcome data.
- 7) scbounds package for R, with Luke Miratrix (HGSE) and Stefan Wager (Stanford): statistical package for the construction of shape-constrained bounds for a population mean under unknown probabilities of sample selection.

Report of Scholarship

Peer-Reviewed Scholarship in print or other media:

Research Investigations:

- 1) **Zubizarreta JR**, Reinke CE, Kelz RR, Silber JH, Rosenbaum PR. Matching for Several Sparse Nominal Variables in a Case Control Study of Readmission Following Surgery. *The American Statistician* 2011. 65: 229-238.
- 2) **Zubizarreta JR**, Neuman MD, Silber JH, Rosenbaum PR. Contrasting Evidence Within and between Institutions that Supply Treatment in an Observational Study of Alternative Forms of Anesthesia. *Journal of the American Statistical Association* 2012. 107: 901-915.
- 3) **Zubizarreta JR**. Using Mixed Integer Programming for Matching in an Observational Study of Acute Kidney Injury after Surgery. *Journal of the American Statistical Association* 2012. 107: 1360-1371.
- 4) Reinke CE, Kelz RR, **Zubizarreta JR**, Lanyu M, Saynisch P, Kyle FA, Even-Shoshan O, Fleisher LA, Silber JH. Obesity and Readmission in Elderly Surgical Patients. *Surgery* 2012. 152: 355-362.
- 5) **Zubizarreta JR**, Small DS, Goyal NK, Lorch SA, Rosenbaum PR. Stronger Instruments Via Integer Programming in an Observational Study of Late Preterm Birth Outcome. *Annals of Applied Statistics* 2013. 7: 25-50.
- 6) **Zubizarreta JR**, Cerdá M, Rosenbaum PR. Effect of the 2010 Chilean Earthquake on Posttraumatic Stress: Reducing Sensitivity to Unmeasured Bias Through Study Design. *Epidemiology* 2013. 24: 79-87 (with discussion).
- 7) Goyal NK, **Zubizarreta JR**, Small DS, Lorch SA. Length of Stay and Readmission Risk for late Preterm Infants: An Instrumental Variable Approach. *Hospital Pediatrics* 2013. 3: 7-15.
- 8) Kelz RR, Reinke CE, **Zubizarreta JR**, Wang M, Saynisch P, Reese P, Even-Shoshan O, Reese PR, Fleisher LA, Silber JH, Acute Kidney Injury, Renal Function, and the Elderly Obese Surgical Patient: A Matched Case-Control Study. *Annals of Surgery* 2013. 258: 359-363.
- 9) Yang F, **Zubizarreta JR**, Small DS, Lorch SA, Rosenbaum PR. Dissonant Conclusions When Testing the Validity of an Instrumental Variable. *The American Statistician* 2014. 68: 253-263.
- 10) **Zubizarreta JR**, Paredes RD, Rosenbaum PR. Matching for Balance, Pairing for Heterogeneity in an Observational Study of the Effectiveness of For-Profit and Not-for-profit High Schools in Chile. *Annals of Applied Statistics* 2014. 8: 2096-2121.

11) **Zubizarreta JR**, Small DS, Rosenbaum PR. Isolation in the Construction of Natural Experiments. *Annals of Applied Statistics* 2014. 8: 2096-2121.

12) Neuman MD, Rosenbaum PR, Ludwig JM, **Zubizarreta JR**, Silber JH. Anesthesia Technique, Mortality, and Length of Stay After Hip Fracture Surgery. *Journal of the American Medical Association* 2014. 311: 2508-2517.

13) Keele L, Titiunik R, **Zubizarreta JR**. Enhancing a Geographic Regression Discontinuity Design Through Matching to Estimate the Effect of Ballot Initiatives on Voter Turnout. *Journal of the Royal Statistical Society: Series A* 2015. 178: 223-239.

14) Hsu J, **Zubizarreta JR**, Small DS, Rosenbaum PR. Strong Control of the Family-Wise Error Rate in Observational Studies that Discover Effect Modification by Exploratory Methods. *Biometrika* 2015. 102: 767-782.

15) **Zubizarreta JR**. Stable Weights that Balance Covariates for Estimation with Incomplete Outcome Data. *Journal of the American Statistical Association* 2015. 110: 910-922.

16) Resa MA, **Zubizarreta JR**. Evaluation of Subset Matching Methods and Forms of Covariate Balance. *Statistics in Medicine* 2016. 35: 4961-4979.

17) Kilcioglu C, **Zubizarreta JR**. Maximizing the Information Content of a Balanced Matched Sample in a Study of the Economic Performance of Green Buildings. *Annals of Applied Statistics* 2016. 10: 1997-2020.

18) **Zubizarreta JR**, Lorch SA, Marshall G, D'Apremont I, Tapia JL. Effect of Prophylactic CPAP in Very Low Birth Weight Infants in South America. *Journal of Perinatology* 2016. 36: 629-634.

19) **Zubizarreta JR**, Keele L. Optimal Multilevel Matching in Clustered Observational Studies: A Case Study of the School Voucher System in Chile. *Journal of the American Statistical Association* 2017. 112: 547-560.

20) Hirshberg, DA, **Zubizarreta JR**. On Two Approaches to Weighting in Causal Inference. Invited commentary. *Epidemiology* 2017. 28: 812-816. [EP]

21) Rosellini AJ, Dussaillant F, **Zubizarreta JR**, Kessler R, Rose S. Predicting Post-traumatic Stress Disorder Following a Natural Disaster. *Journal of Psychiatric Research* 2018. 96: 15-22. [EP]

22) Hu W, Chan C, **Zubizarreta JR**, Escobar G. An Examination of Early Transfers to the ICU Based on a Physiologic Risk Score. *Manufacturing & Service Operations Management* 2018. 20: 531-549.

23) Hu W, Chan C, **Zubizarreta JR**, Escobar G. Incorporating Longitudinal Comorbidity and Acute Physiology Data in Template Matching for Assessing Hospital Quality: An Exploratory Study in an Integrated Health Care Delivery System. *Medical Care* 2018. 56: 448-454

24) Haneuse S, **Zubizarreta JR**, Normand SLT. On Assessing the Quality of Health Care Providers Using Time-Varying Patient Outcomes. Invited commentary. *Biometrics* 2018. 74: 1395-1397.

25) **Zubizarreta JR**, Small DS, Rosenbaum PR. A Simple Example of Isolation in Building a Natural Experiment. *Chance* 2018. 31: 16-23.

26) Aronow PM, Crawford FW, **Zubizarreta JR**. Confidence Intervals for Linear Unbiased Estimators Under Constrained Dependence. *Electronic Journal of Statistics* 2018. 12: 2238-2252.

27) Visconti G, **Zubizarreta JR**. Handling Limited Overlap in Observational Studies with Cardinality Matching. *Observational Studies* 2018. 4: 217-249.

28) Miratrix LW, Wager S, **Zubizarreta JR**. Shape-Constrained Partial Identification of a Population Mean Under Unknown Probabilities of Sample Selection. *Biometrika* 2018. 107: 103-114.

29) Gondi S, Wright AA, Landrum MB, **Zubizarreta JR**, Chernew ME, Keating N. Multimodality Cancer Care and Implications for Episode Payments in Cancer. *American Journal of Managed Care* 2019. 25: 537-538.

30) Kessler RC, Bossarte RM, Luedtke A, Zaslavsky AM, **Zubizarreta JR**, Machine Learning Methods for Developing Precision Treatment Rules, *Behaviour Research and Therapy* 2019. 120, 103412.

31) Kessler RC, Bossarte RM, Luedtke A, Zaslavsky AM, **Zubizarreta JR**, Suicide Prediction Models: A Critical Review of Recent Research with Recommendations for the Way Forward, *Molecular Psychiatry* 2020. 25: 168-179.

32) Wilcock AD, Schwamm LH, Zachrisson KS, Uscher-Pines L, **Zubizarreta JR**, Mehrotra A. Trends in Care Delivery and Outcomes for Acute Stroke and Transient Ischemic Attacks among Rural and Urban Medicare Beneficiaries, 2008-2017, *Journal of the American Medical Association, Neurology*, 2020. 77: 863-871.

33) Resa MA, **Zubizarreta JR**. Direct and Stable Weight Adjustment in Non-Experimental Studies with Multi-valued Treatments: Analysis of the Impact of an Earthquake on Posttraumatic Stress. *Journal of the Royal Statistical Society: Series A*, 2020. 183: 1387-1410.

34) Chattopadhyay A, Hase C, **Zubizarreta JR**. Balancing Versus Modeling Approaches to Weighting in Practice. *Statistics in Medicine*, 2020. 39: 3227-3254.

35) Wang Y, **Zubizarreta JR**, Minimal Dispersion Approximately Balancing Weights: Asymptotic Properties and Practical Considerations. *Biometrika*, 2020. 107: 93-105.

36) Bennett M, Vielma, JP, **Zubizarreta JR**. Building a Representative Matched Samples with Multi-valued Treatments in Large Observational Studies. *Journal of Computational and Graphical Statistics*, 2020. 29: 744-757.

37) Ziobrowski HN, Leung LB, Puac-Polanco V, Bossarte RM, Bryant C, Keusch J, Liu H, Pigeon WR, Oslin DW, Post EP, Zaslavsky AM, **Zubizarreta JR**, Kessler RC. Comorbid Mental Disorders, Depression Symptom Severity, and Role Impairment Among Veterans Initiating Depression Treatment Through the Veterans Health Administration. *Journal of Affective Disorders*, 2021. 290: 227-236.

38) Patel SY, Huskamp HA, Barnett ML, **Zubizarreta JR**, Zachrison KS, Busch AB, Wilcock AD, Mehrotra A. Association between Telepsychiatry Capability and Treatment of Patients with Mental Illness in the Emergency Department. *Psychiatric Services*, 2021. 73: 403-410.

39) **Zubizarreta JR**, Umhau JC, Deuster P, Brenner LA, King A, Petukhova M, Tizenberg B, Upadhyaya SK, RachBeisel JA, Streeten E, Kessler RC, and Postolache TT. Evaluating the Heterogeneous Effect of a Modifiable Risk Factor on Suicide: The Case of Vitamin D Deficiency, *International Journal of Methods in Psychiatric Research*, 2021. 31: e1897.

40) Gondi S, Wright AA, Landrum MB, Meneades L, **Zubizarreta JR**, Chernew ME, Keating NL. Assessment of Patient Attribution to Care from Medical Oncologists, Surgeons or Radiation Oncologists Following a New Cancer Diagnosis. *Journal of the American Medical Association, Network Open*, 2021. 4: e218055.

41) Keating NL, Cleveland JLF, Wright AA, Brooks GA, Meneades L, Riedel L, **Zubizarreta JR**, Landrum MB. Reliability and Correlations of Quality Measures for Oncology Cancer Care: Implications for Alternative Payment Models. *Journal of the American Medical Association, Network Open*, 2021. 4: e212474.

42) Wilcock AD, Schwamm LH, **Zubizarreta JR**, Zachrison KS, Uscher-Pines L, Richard JV, Mehrotra A. Reperfusion Treatment and Stroke Outcomes in Hospitals with Telestroke Capacity, *Journal of the American Medical Association. Neurology*, 2021. 8: 527-535.

43) Leung LB, Ziobrowski HN, Puac-Polanco V, Bossarte RM, Bryant C, Keusch J, Liu H, Pigeon WR, Oslin DW, Post EP, Zaslavsky AM, **Zubizarreta JR**, Kessler RC. Are Veterans Getting their Preferred Depression Treatment? A National Observational Study in the Veterans Health Administration. *Journal of General Internal Medicine*, 2022. 37:3235-3241.

44) Zachrison KS, Richard JV, Wilcock AD, **Zubizarreta JR**, Schwamm LH, Uscher-Pines L, Mehrotra A. Is Hospital Adoption of Telestroke Associated with Changes in the Stroke System of Care? *Journal of the American Medical, Network Open*, 2022. 4: e2126612.

45) Ziobrowski HN, Cui R, Ross EL, Liu H, Puac-Polanco V, Leung LB, Bossarte RM, Bryant C, Pigeon WR, Oslin DW, Post EP, Zaslavsky AM, **Zubizarreta JR**, Nierenberg AA, Luedtke A, Kennedy CJ, Kessler RC. Development of a Model to Predict Psychotherapy Treatment Response for Depression Among Veterans. *Psychological Medicine*, 2022. 53:3591-3600.

46) Wilcock AD, Schwamm LH, **Zubizarreta JR**, Zachrison KS, Uscher-Pines L, Majersik JJ, Richard JV, Mehrotra A. Impact of the FAST Act on Billing for Telemedicine. *Health Affairs* 2022. 41: 350-359.

47) Li Y, Undurraga EA, **Zubizarreta JR**. Effectiveness of Localized Lockdowns in the COVID-19 Pandemic. *American Journal of Epidemiology*, 2022. 191: 812-824.

48) Niknam B, **Zubizarreta JR**. Using Cardinality Matching to Design Balanced and Representative Samples for Observational Studies. *Journal of the American Medical Association*, 2022. 327: 173-174.

49) Song Z, **Zubizarreta JR**, Giurato M, Paulos E, Koh KA. Health Care Spending, Utilization, and Morbidity After Nonfatal Firearm Injuries. *Annals of Internal Medicine*, 2022. 175: 795-803.

50) Jara A, Undurraga EA, **Zubizarreta JR**, Gonzalez C, Pizarro A, Acevedo J, Leo K, Paredes F, Bralic T, Vergara V, Mosso M, Leon F, Parot I, Leighton P, Suarez P, Rios JC, Garcia-Escorza H, Araos R. Effectiveness of Homologous and Heterologous Booster Shots for an Inactivated SARS-CoV-2 Vaccine: A Large-Scale Observational Study. *Lancet Global Health*, 2022. 10: e798-e806.

51) Jara A, Undurraga EA, **Zubizarreta JR**, Gonzalez C, Acevedo J, Pizarro A, Vergara V, Soto-Marchant, M, Gilabert R, Flores JC, Suarez P, Leighton P, Eguiguren P, Rios JC, Garcia-Escorza H, Araos R. Effectiveness of CoronaVac in Children 3 to 5 Years During the Omicron SARS-CoV-2 Outbreak in Chile. *Nature Medicine*, 2022.

52) Cohn E, **Zubizarreta JR**. Profile Matching for the Generalization and Personalization of Causal Inferences. *Epidemiology*, 2022. 33:678-688.

53) Kessler RC, Ruhm CJ, Chiu WT, Hwang IH, Lee S, Petukhova MV, Puac-Polanco V, Sampson NA, Ziobrowski HN, Zaslavsky AM, **Zubizarreta JR**. Estimated Prevalence and Correlates of Clinically Significant Anxiety-Depression among US Adults During the First Year of the COVID-19 Pandemic. *Journal of the American Medical Association, Network Open*, 2022. 5:e2217223.

54) Rauh-Hain JA, **Zubizarreta JR**, Nitecki R, Melamed A, Fu S, Jorgensen K, Brady PC, Baker VL, Chavez Mac Gregor M, Keating NL, Giordano SH. Survival Outcomes Following Pregnancy or Assisted Reproductive Technologies after Breast Cancer: A Population-Based Study. *Cancer*, 2022. 128:3243-3253

55) Bossarte RM, Kessler RC, Nierenberg AA, Chattopadhyay A, Cuijpers P, Enrique A, Foxworth PM, Gildea SM, Belnap BH, Haut MW, Law KB, Lewis WD, Liu H, Luedtke AR, Pigeon WR, Rhodes LA, Richards D, Rollman BL, Sampson NA, Stokes CM, Torous J, Webb TD, **Zubizarreta JR**. The Appalachia Mind Health Initiative (AMHI): A Pragmatic Clinical Trial of Adjunctive Internet-Based Cognitive Behavior Therapy for Treating Major Depressive Disorder Among Primary Care Patients. *Trials*, 2022. 23, 520.

56) Kim K, Kennedy EH, **Zubizarreta JR**. Doubly Robust Counterfactual Classification. *Advances in Neural Information Processing Systems (NeurIPS)*, 2022. 35: 34831-34845

57) Puac-Polanco V, Ziobrowski HN, Ross EL, Liu H, Turner B, Cui R, Leung LB, Bossarte RM, Bryant C, Joormann J, Nierenberg AA, Oslin DW, Pigeon WR, Post EP, Zainal NH, Zaslavsky AM, **Zubizarreta JR**, Luedtke A, Kennedy CJ, Cipriani A, Furukawa TA, Kessler RC. Development of a Model to Predict Antidepressant Treatment Response for Depression Among Veterans. *Psychological Medicine*, 2023. 53:5001-5011.

58) Jara A, Undurraga EA, Flores JC, **Zubizarreta JR**, Gonzalez C, Pizarro A, Ortúñoz-Borroto D., Acevedo J, Leo K, Paredes F, Bralic T, Vergara V, Leon F, Parot I, Leighton P, Suarez P, Rios JC, Garcia-Escorza H, Araos R. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Children and Adolescents: A Large-Scale Observational Study. *Lancet Regional Health*, 2023. 28:1377-1380.

59) Bossarte RM, Ross EL, Liu H, Turner B, Bryant C, Zainal NH, Puac-Polanco V, Ziobrowski HN, Cui R, Cipriani A, Furukawa TA, Leung LB, Joormann J, Nierenberg AA, Oslin DW, Pigeon WR, Post EP, Zaslavsky AM, **Zubizarreta JR**, Luedtke A, Kennedy CJ, Kessler RC. Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans. *Journal of Affective Disorders*, 2023. 326:111-119.

60) Ziobrowski HN, Cui R., Ross EL, Liu H, Puac-Polanco V, Turner B, Leung LB, Bossarte R M, Bryant C, Pigeon WR, Oslin DW, Post EP, Zaslavsky AM, **Zubizarreta JR**, Nierenberg AA, Luedtke A, Kennedy CJ, & Kessler RC. Development of a model to predict psychotherapy response for depression among Veterans. *Psychological Medicine*, 2023. 53: 3591–3600

61) Song Z, **Zubizarreta JR**, Giurato M, Koh KA, Sacks CA. Firearm Injuries in Children and Adolescents: Changes in Health and Health Care Among Survivors and Family Members. *Health Affairs*, 2023. 175:795-803.

62) Tang M, Nakamoto, CH, Stern AD, **Zubizarreta JR**, Marcondes FO, Uscher-Pines L, Schwamm, LH, Mehrotra A. Effects of Remote Patient Monitoring Use on Care Outcomes among Medicare Patients with Hypertension. *Annals of Internal Medicine*, 2023. 176, 1465-1475.

63) Wilcock AD, Huskamp HA, Busch AB, Normand SLT, Uscher-Pines L, Raja PV, **Zubizarreta JR**, Barnett ML, Mehrotra A. Use of Telemedicine and Quality of Care Among Medicare Enrollees With Serious Mental Illness. *Journal of the American Medical Association, Health Forum*, 2023. 4, e233648.

64) Niknam B, **Zubizarreta JR**. Examining Sources of Post-Acute Care Inequities with Layered Target Matching. *Health Services Research*, 2023, 58:19-29.

65) Diaz J, **Zubizarreta JR**. Complex Discontinuity Designs Using Covariates: Impact of School Grade Retention on Later Life Outcomes in Chile. *Annals of Applied Statistics*, 2023. 17:67-88.

66) Kim K, **Zubizarreta JR**. Toward Fair and Robust Estimation of Optimal Treatment Regimes. *International Conference on Machine Learning (ICML)*, 2023. 16997-17014.

67) Chattopadhyay A, **Zubizarreta JR**. On the Implied Weights of Linear Regression for Causal Inference. *Biometrika*, 2023. 110:615-629.
*Dempster Student Prize, Harvard University, 2021

68) Wang Y, **Zubizarreta JR**. Large Sample Properties of Matching for Balance. *Statistica Sinica*, 2023. 33: 1-20.

69) Han L, Shen Z, **Zubizarreta JR**. Multiply Robust Federated Estimation of Targeted Average Treatment Effects. *Advances in Neural Information Processing Systems (NeurIPS)*, 2023. 36: 70453-70482.

70) Geng F, McGarry BE, Rosenthal MB, **Zubizarreta JR**, Resch SC, Grabowski DC. Preferences for Post-Acute Care at Home versus Facilities: A Discrete Choice Experiment. *Journal of the American Medical Association, Health Forum*, 2024. 5: e240678-e240678

71) Kessler RC, Bossarte RB, Hwang I, Luedtke A, Naifeh JA, Nock MK, Petukhova M, Sadikova E, Sampson NA, Sverdrup E, **Zubizarreta JR**, Wager S, Wagner J, Stein MB, Ursano RJ. A Prediction Model for Differential Resilience to the Effects of Combat-Related Stressors in US Army Soldiers. *International Journal of Methods in Psychiatric Research*, 2024. 33: e70006.

72) Zainal NH, Benjet C, Albor Y, Nuñez-Delgado M, Zambrano-Cruz R, ContrerasIbáñez CC, Cudris-Torres L, de la Peña FR, González N, Guerrero-López JB, Gutierrez-Garcia RA, Jiménez-Pérez AL, Medina-Mora ME, Patiño P, Cuijpers P, Gildea SM, Kazdin AE, Kennedy CJ, Luedtke A, Sampson N, Petukhova M, **Zubizarreta JR**, Kessler RC. Statistical Methods of Adjusting for

the Effects on Intervention Compliance in Randomized Clinical Trials where Precision Treatment Rules are Being Developed. *International Journal of Methods in Psychiatric Research*, 2025. 34(1):e70005.

73) Wilcock AD, **Zubizarreta JR**, Wadhera RK, Yeh RW, Zachrison KS, Schwamm LH, Mehrotra A. Factors Underlying the Reduction in Hospitalizations for Myocardial Infarction During the COVID-19 Pandemic. *Journal of the American Medical Association, Cardiology*, 2024. 9: 914-920.

74) Chattopadhyay A, Cohn ER, **Zubizarreta JR**. One-Step Weighting to Generalize and Transport Treatment Effect Estimates to a Target Population. *The American Statistician*, 2024. 78: 280-289.

75) Kim K, Niknam B, **Zubizarreta JR**. Scalable Kernel Balancing Weights in a Nationwide Observational Study of Hospital Profit Status and Heart Attack Outcomes. *Biostatistics*, 2024. 25: 736-753.

76) Han L, Li Y, Niknam B, **Zubizarreta JR**. Privacy-Preserving, Communication Efficient, and Target-Flexible Hospital Quality Measurement. *Annals of Applied Statistics*, 2024, 18:1337-1359.
*American Statistical Association Health Policy Statistics Student Paper Award, 2023.

77) Chattopadhyay A, **Zubizarreta JR**. Causation, Comparison, and Regression. *Harvard Data Science Review*, 2024, 6.1.

78) Chattopadhyay A, Greifer N, **Zubizarreta JR**. lmw: Linear Model Weights for Causal Inference. *Observational Studies*, 2024. 10: 33-62.

79) Benjet C, Zainal N, Albor Y, Alvis-Barranco L, Carrasco Tapia N, Contreras-Ibáñez C, Cortés-Morelos J, Cudris-Torres L, de la Peña F, González N, Gutierrez-Garcia R, Vargas-Contreras E, Medina-Mora M, Patiño P, Gildea S, Kennedy C, Luedtke A, Sampson N, Petukhova M, **Zubizarreta JR**, Cuijpers P, Kazdin A, Kessler R. The Effect of Predicted Compliance with a Web-Based Intervention for Anxiety and Depression Among Latin American University Students: Randomized Controlled Trial. *JMIR Ment Health* 2025;12:e64251.

80) Koh KA, Giuriato M, Sacks CA, **Zubizarreta JR**, Song Z. Psychiatric and Substance Use Disorders After Nonfatal Firearm Injury, *Journal of the American Medical Association, Psychiatry*, 2025. 10: 1051-1053.

81) Kannan S, Bruch J, **Zubizarreta JR**, Stevens J, Song Z. Hospital Staffing and Patient Outcomes After Private Equity Acquisition, *Annals of Internal Medicine*, 2025. 178: 1529-1538.

82) Cohn ER, **Zubizarreta JR**. IJMPR Didactic Paper: Weighting for Causal Inference in Mental Health Research. *Int J Methods Psychiatr Res*. 2025. Jun;34(2):e70018.

83) Cohn ER, Song Z, **Zubizarreta JR**. Risk Set Matched Difference-in- Differences for the Analysis of Effect Modification in an Observational Study on the Impact of Gun Violence on Health Outcomes. *Annals of Applied Statistics*, 2025. 19: 75-93.
*American Statistical Association Health Policy Statistics Student Paper Award, 2024

84) Karandinos G, Giuriato MA, Zubizarreta JR, Koh KA, Masiakos PT, Song Z, Sacks CA. Mental Health Outcomes in Children after Parental Firearm Injury, *New England Journal of Medicine*, 2026, in press.

85) Li, Y, Keating, NL, Landrum, MB, **Zubizarreta, JR.** Targeted Quality Measurement of Health Care Providers, *Journal of the Royal Statistical Society: Series A*, 2026, in press.

86) Chattopadhyay A, Morris CN, **Zubizarreta JR.** Balanced and Robust Randomized Treatment Assignments: The Finite Selection Model for the Health Insurance Experiment and Beyond. *Journal of the Royal Statistical Society: Series A*, 2026, in press (with discussion).
 * Read before the Royal Statistical Society, 2025.

87) Shen Z, **Zubizarreta JR.** Simplification, Diagnostics, and the Hypothetical Experiment that Weighting Reveals. Comment on 'Augmented Balancing Weights as Linear Regression' by David Bruns-Smith, Oliver Dukes, Avi Feller, and Elizabeth L. Ogburn." *Journal of the Royal Statistical Society: Series B*, 2026, in press.

88) Rosenbaum, PR, **Zubizarreta, JR.** Effect Aliasing in Observational Studies, *Journal of the American Statistical Association*, 2026, in press.

Non-peer reviewed scholarship in print or other media:

Books:

1) **Zubizarreta JR**, Stuart EA, Small DS, Rosenbaum PR. *Handbook of Matching and Weighting Adjustments for Causal Inference*. Chapman & Hall/CRC Press 2023.

Proceedings of meetings or other non-peer reviewed scholarship:

2) **Zubizarreta JR.** Educational Outcomes of the Children of the Poor: the Chilean Case, background paper prepared for the Human Development Report 2008/2009 for Latin America and the Caribbean. United Nations Development Plan 2009.

3) **Zubizarreta JR.** Introduction to matching in Observational Studies Using Mixed Integer Programming. *Transactions of the Annual Deming Conference on Applied Statistics* 2012.

Reviews, chapters, monographs and editorials:

1) Rodriguez C, Dominguez P, Undurraga E, **Zubizarreta JR.** Identification and Characterization of Vulnerable Populations: Elements for the Measurement of Risk. In: *Towards the Bicentenary: Proposals for Chile*. Ediciones UC 2009. 305-328. (In Spanish.)

2) Paredes RD, Volante P, Opazo MO, **Zubizarreta JR.** Shared Financing in the Chilean Subsidized Education. In: *Proposals for Chile*. Ediciones UC 2013. 51-83. (In Spanish.)

3) Mozer R, Rubin DB, **Zubizarreta, JR.** Statistical Inference for Causal Effects in Clinical Psychology: Fundamental Concepts and Analytical Approaches. In: *Handbook of Research Methods in Clinical Psychology*. Cambridge University Press, 2020.

4) Cohn ER, Ben-Michael E, Feller A, **Zubizarreta, JR.** Balancing Weights for Causal Inference. In: *Handbook of Matching and Weighting Methods for Causal Inference*. Chapman & Hall/CRC 2023.

5) Rosenbaum PR, **Zubizarreta, JR.** Optimization Techniques in Multivariate Matching. In: *Handbook of Matching and Weighting Methods for Causal Inference*. Chapman & Hall/CRC 2023.

Preprints in online repositories:

- 1) Ben-Michael E, Feller A, Hirshberg D, **Zubizarreta JR.** The Balancing Act for Causal Inference. arXiv:2110.14831v1
- 2) Chattopadhyay A, Imai K, **Zubizarreta JR.** Design-Based Inference for Generalized Network Experiments with Stochastic Interventions. arXiv:2312.03268
- 3) Chattopadhyay A, Morris CN, **Zubizarreta JR.** Randomized and Balanced Allocation of Units into Treatment Groups Using the Finite Selection Model for R. arXiv:2105.02393v1
- 4) Cinelli C, Feller A, Imbens G, Kennedy E, Magliacane S, **Zubizarreta JR.** Challenges in Statistics: A Dozen Challenges in Causality and Causal Inference. arXiv:2508.17099
- 5) Hirshberg DA, Maleki A, **Zubizarreta JR.** Minimax Linear Estimation of the Retargeted Mean. arXiv:1901.10296v2
- 6) Ying Jin, **Zubizarreta JR.** Cross-Balancing for Data-Informed Design and Efficient Analysis of Observational Studies. arXiv:2511.15896
- 7) Kim K, Mishler A, **Zubizarreta JR.** Counterfactual Mean-variance Optimization. arXiv:2209.09538
- 8) Li Y, Resa MA, **Zubizarreta JR.** Adaptive Orthogonalization for Stable Estimation of the Effects of Time-Varying Treatments. arXiv:2511.02971
- 9) Shi W, **Zubizarreta JR.** On the Use of Weighting for Personalized and Transparent Evidence Synthesis. arXiv:2509.00228
- 10) Shen Z, Chattopadhyay A, Lin Y, **Zubizarreta JR.** An Anatomy of Event Studies: Hypothetical Experiments, Exact Decomposition, and Weighting Diagnostics. arXiv:2410.17399
- 11) Woodward SM, Dominici F, **Zubizarreta JR.** Understanding Spatial Regression Models from a Weighting Perspective in an Observational Study of Superfund Remediation. arXiv:2508.19572

Thesis:

Zubizarreta JR. Optimal Designs for Observational Studies Using Integer Programming. University of Pennsylvania. 2013.